
REAL TIME UNIX TELEMETRY SUPPORT SYSTEM

Item Type text; Proceedings

Authors Crabtree, Steven B.; Feather, Bobby J.

Publisher International Foundation for Telemetering

Journal International Telemetering Conference Proceedings

Rights Copyright © International Foundation for Telemetering

Download date 27/05/2018 20:04:40

Link to Item http://hdl.handle.net/10150/613464

http://hdl.handle.net/10150/613464


REAL TIME UNIX TELEMETRY SUPPORT SYSTEM

Steven B. Crabtree and Bobby J. Feather
Principal Engineer Principal Engineer
Loral Data Systems Loral Data Systems
P.O. Box 3041 P.O. Box 3041
Sarasota, Florida Sarasota, Florida

ABSTRACT

Telemetry applications today are requiring more and more computing power. The
computing industry is responding to this need with more powerful machines. With these
new machines the UNIX operating system is rapidly being accepted as the system of
choice for the popular lowend and midrange RISC and CISC computers. The system
discussed addresses the long standing question, “Can a complete UNIX system perform
in a high-data-rate real-time environment?”.

This paper describes the Loral Data Systems development of a Real-Time Data
Transcription System (RDTS) built for Lawrence Livermore National Laboratory and
TRW. This system utilizes a powerful telemetry preprocessor, internally bus-coupled to a
real time UNIX host computer. An industry-standard VME-to-VME coupling provides an
efficient setup, control and computational gateway for preprocessed telemetry data. This
architecture illustrates a UNIX operating system to support a pseudo-real-time telemetry
application.

SYSTEM DESCRIPTION

The Real-Time Data Transcription System is a single-rack real-time UNIX data processing
system. It is based on the EMR 8715 Telemetry Preprocessor and the Concurrent
MC6400 computer system. The system reads, formats, and archives bit-parallel data from
an analog tape recorder/reproducer to the computer’s digital disk units.

The RDTS system performs the following functions:

! Reads 28-bit parallel raw data from a Tape Recorder and Error Detection and
Correction System (EDCS).



! Compresses and formats 28-bit data into a 16-bit integer format suitable for
processing by the computer.

! Reformats incoming data, builds an image buffer, and stores the data onto the disk
subsystem.

! Copies data from the disk subsystem to the tape subsystem.

! Provides a support environment for development of new DPU microcode algorithms.

! Performs preprocessor board-level and system-level diagnostics.

! Provides a standard UNIX operating system to control the preprocessor and the
acquisition process.

! Provides a standard UNIX operating system for development of software to perform
analysis on the stored data.

! Provides high-resolution graphics on a 19" color monitor for the analysis display
development environment.

SYSTEM HARDWARE

The RDTS system consists of the following hardware as depicted in Figure 1.

! Analog Tape Recorder to reproduce the 28-track tapes on which the parallel data is
recorded.

! Error detection and correction system to virtually eliminate tape record-reproduce
errors.

! Preprocessor consisting of a 20 slot chassis, one Data Input Module (DIM), two
Distributed Processing Units (DPU), a System Utility Module (SUM), and a display
terminal console.

! VME/VME Bus Adapter to connect the preprocessor VME bus to the computer VME
bus.

! Host computer system, consisting of one computer, eight SCSI disks, four 8MM
cartridge tape drives, and one 19" color monitor with a four-plane graphics
co-processor.



OPERATIONAL DATA FLOW

Data is input to the system’s DIMs from the tape recorder/EDCS unit. The 28 tracks of
raw data consist of 2 control bits, 16 bits of system data, and 10 bits of waveform data.
The two control bits identify system words and waveform word combinations. The data
input modules route data words to two distributed processing units for processing via an
80 MByte per second bus.

As the DPUs receive data parameters from the DIM, the buffer-building algorithm is
executed on each parameter. The algorithm separates incoming data words into 16-bit
system words and 10-bit waveform words, and processes each word according to its
type.

Each pair of consecutive system words are averaged to form a single 16-bit word. The
resultant sample is combined with the next pair of averaged words to form a 32-bit word.
The final 32-bit data word, along with the address where the word is to be located in the
host computer’s disk data buffer, are placed back on the PCD bus and sent to the SUM.

Each pair of consecutive 10-bit waveform words are right-justified to make two 16-bit
data words. The words are appended together to make a single 32-bit word for transfer
via the SUM to the host’s disk data buffer.

Figure 2 illustrates the incoming data format and a segment of the disk data buffer.

The SUM serves as high-speed bus bridge between the 80 MByte/second bus and the 40
MByte/second VME bus. Data samples and this point have been combined into 32-bit
data words by the DPUs to maximize the efficiency of the SUM.

Once data has been reformatted and deposited into the host’s disk buffer memory space
and the disk buffer is full, the DPU issues a VME interrupt to the acquisition software on
the host computer. The acquisition software then writes the buffer to disk.

Figure 3 shows system data flow.

Following the archiving to disk, the CPU may copy disk data to cartridge tapes by
reading data into memory and transferring it to tape via SCSI bus adapters. Since there
are multiple SCSI adapters controlling disks and tape units, as many as four cartridge
tapes can be copied at the same time. This reduces the time required to copy large
amounts of data from the high speed disks to the relatively slow tape units.



SOFTWARE TO MAKE THE HARDWARE WORK

Figure 4 depicts a high level software block diagram for the system.

User/Menu Interface

The user interface to the system is controlled by two independent processes, the
DISPATCHER and the MENU PRESENTER.

The dispatcher initiates functions in response to user selections. At user login, the
dispatcher executes the menu presenter, which displays the main menu to the user. The
menu presenter uses a menu definition file to determine how the menu tree is to be
presented. This same file identifies the function to be performed when the user selects a
menu item for execution.

The menu presenter is designed as a special built-in function of the dispatcher program,
and requires no arguments. This eliminates the necessity of reading the menu definition file
each time a menu is presented to the user.

Other functions started by the dispatcher are script files and processing programs. Menu
functions communicate with the dispatcher and menu presenter. Figure 5 illustrates the
user interface.

Tape Recorder Control

The tape recorder control program provides an interface between the host computer and
the analog tape recorder unit. This program may be invoked by the menu dispatcher or by
command line input. The program accepts two arguments as inputs at program initiation.
The first argument is the tape drive command to be executed. The second is used to
establish which RS232 serial port is to be used for communications.

The program first puts the tape drive into remote status mode and determines its current
status. If the status indicates everything is OK, then the command indicated by the first
argument is issued to the tape drive. Any errors or conditions are reported or redirected
to the dispatcher process as necessary.

Microcode Development Environment

The Microcode Development Environment (MDE) provides the end user the ability to
develop DPU algorithm processing code which can be executed on any parameter
processed by the preprocessor. The MDE environment provided with this system was



hosted on an IBM PC. The editors, compilers, and linkers required to build executable
code for the DPUs are executed on the PC. The resultant microcode file is then
transferred to the MC6400 computer for inclusion and usage by the preprocessor
compiler and loader.

Compile/Load Preprocessor

The compiler package prepares information to be down-loaded from a host computer
system to the preprocessor. The compiler accesses information from several data sources
and writes the information in machine-readable format to a file to be used by the loader
package.

Information needed varies according to the hardware configuration of the unit and
includes the following items:

! Supervisor module
! Location and type of each board in the card cage
! Setup information for each board
! Routes for data streams within the chassis
! Algorithm chain associated with each parameter
! Microcode that implements each algorithm
! Arguments for each parameter

After the compiler has created the load image file, the loader is executed to transfer the
compiled image into individual modules.

Prepare For Data Acquisition

Preparation for acquiring data is a two-step process. The first step requires the system
operator to define the size and number of data buffers to be used for recording. This
process also requires the operator to identify the disk volume swap list where data is to be
stored. The operator must also establish names of the data files. The second preparation
step involves initiating the acquisition task. This task loads setup information into DPU
memory for use by the buffer-building algorithms, and then waits for a start-acquisition
command.

Perform Data Acquisition

When loaded, the preprocessor’s DPUs are turned off. To start the data acquisition and
buffer building processes, DPUs are turned on via command from the host acquisition 



program. Once the DPUs have been started, data begins passing thru the system utility
module to the host computer, and then to the selected data disk.

The current disk volume is utilized until data acquisition is terminated, the run number
(internal to the data) changes, or the volume becomes full. If the run number changes, the
current volume is closed and the next volume is opened. Archiving continues with the new
volume. When the current volume is filled, the same volume-swapping logic is used to
record data to the next device indicated by the volume-swap list.

Monitor Data Acquisition

The system operator must be able to monitor the amount of data being recorded to disk,
and to get an indication of the amount of bad and questionable data from the analog tape
unit. The buffer-building algorithms executing within the preprocessor DPUs maintain the
necessary status information concerning buffer counts and bad data. This information is
retrieved from the DPUs at every buffer-full interrupt, and made available to the user.
Figure 6 illustrates the monitor data acquisition display.

Preprocessor Front Panel Monitor and Control Operation

For this system, the CPU board normally used to control the preprocessor was removed
from the chassis and the host CPU serves as the controlling computer. To support this
configuration, the utility program used to control and monitor the preprocessor’s
individual functions was ported to the CPU environment. The relocated monitor software
was then executed on operator demand, under control of the operating system. Figure 7
shows the preprocessor system status monitor. The monitor allows the operator to do the
following functions via interaction with the CRT front panel:

! Monitor the processing/status of boards
! Monitor the execution of a single DPU algorithm
! Perform board-level health test
! Perform selected board-level diagnostics
! Perform system (preprocessor) thruput tests
! Perform system (preprocessor) output tests
! Perform PCD bus output tests
! Turn selected boards on/off
! Setup selected board registers
! Examine/deposit VME memory
! View/modify miscellaneous configuration items
! View system (preprocessor) status messages



Copy Data From Disk to Tape

To produce multiple copies of an archived disk data file, a utility program is used to copy
a disk file to multiple tape units. The two command parameters for controlling operation
are the name of the disk data file to be copied and the names of the tape units where the
file is to be copied. The system provides the ability to reproduce up to four copies of the
named disk file while utilizing the corresponding number of tape cartridge units.

CONCLUSION

Design objectives which were met in this system include using a VME to VME adapter to
set up and control the preprocessor. This close coupling of the preprocessor to a generic
VME host architecture eliminates the need for a CPU card in the preprocessor chassis.
Also, the DPUs are executing a new algorithm which averages incoming data, reformats,
and outputs converted data directly into the CPU memory. Next, the configuration
supports inputting, processing, and recording data to disk at a sustained rate of more than
1.0 Mbyte/second, utilizing a commercial off-the-shelf UNIX operating system, AT&T
System V Release 2, Berkeley 4.2 BSD compatible. Finally, the disk and cartridge tape
drives perform well in this SCSI bus configuration.

ACKNOWLEDGEMENTS

We would like to thank the Loral Data Systems software and hardware development team;
Larry, Gwen, Dan S., Dan C., Chuck, Mark, and James for their persistent efforts in
making this project a success.



Figure 1. Real-Time Data Transcription System



Figure 2. Input / Output Data Format



Figure 3. System Data Flow



Figure 4. Software Block Diagram



Figure 5. User Interface Data Flow



Figure 6. “Monitor Data Acquisition” Menu

Figure 7. “System Monitor” Display Page


